
Seismic-guided estimation of log properties

Part 1: A data-driven interpretation methodology

By PHILIP S. SCHULTZ, SHUKI RONEN, MASAMZ HATTORI, CHIP CORBETT
Schlumberger (GeoQuest and Geco-Prakla)

Seismic data are routinely and effectively used to estimate
the structure of reservoir bodies but often play no role in the
essential task of estimating the spatial distribution of reservoir
or rock properties. Yet, for a long time, we have been using
attributes or other features of seismic data to gain useful clues
in the interpretation process. Since the 1960s, we have known
that reflection amplitude is sensitive to the thickness of thin
beds. In the 1970s, bright spots were discovered to be useful
in forecasting the presence of gas sands. Then, in the 1980s,
amplitude variation with offset (AVO) analysis was identi-
fied as an even more refined indicator for gas sands or other
situations, giving rise to Poisson’s ratio contrasts. Other ex-
amples exist, such as predicting porosity from calibrated
acoustic impedance values computed from seismic data.

In these methods, there is an obvious rock physics basis
for anticipating the relationships that have been found. For
example, dominant frequency resonance (tuning) effects are
responsible for the relationship of amplitude to thin-bed
thickness; impedance contrasts caused by low-impedance
gas-saturated sands lead to bright spots; and velocity, density,
and Poisson’s ratio contrasts give rise to AVO anomalies. In
each of these cases, we can start with first principles of rock
physics and acoustic wave propagation and extract an approx-
imation to relate a seismic attribute to a rock physics property
(e.g., the Shuey approximation to the Zoeppritz equations for
AVO, or Wyllie’s time average equation approximation for
porosity).

Have all the relationships been found? There may soon be
another discovery of a direct and clearly derivable approxi-
mation from theory which relates a measurable seismic attri-
bute to a rock property, but such discoveries are becoming
more difficult to find. If we want additional quantitative

In this three-part series, we discuss a new way that 3-D
seismic data are being used in the interpretation process-to
help provide quantitative estimates of the spatial distribution
of rock or reservoir properties, as measured from logs. Part
1 presents the methods by which 3-D seismic attributes can
be usedforproperty estimation. Part 2 explains how artificial
neural networks can be used to calibrate seismic attributes
against properties. Finally, Part 3 will give the results of
controlled studies with field data in which the resulting
property maps give improved accuracy over traditional
wells-only mapping methods.

relationships between seismic data and rock properties, we
will have to change our approach.

Historically, we have identified relationships following a
line of reasoning like this,

theory  approximation ‘measurement interpretation.

We start with a theory, then make an approximation which
leads to a relationship between measurable seismic quantities
(attributes) and a rock property. The measurement is made on
the data, and leads to the interpretation. Seismic and log data
are only passive players in looking for relationships between
attributes and rock properties. They may play a role only in
verifying that a derived relationship works in practice.

While we know that all features of the seismic signals are
directly caused by rock physics phenomena, the relationships
between rock properties and the more obscure seismic attri-
butes are not obvious. It is becoming increasingly difficult to
derive attribute-property relationships directly from theory,
especially those attributes which might easily be measurable
on the data and which exhibit a reasonably high signal-to-
noise ratio. Yet, there are many seismic attributes that we can
compute, such as instantaneous frequency and reflection het-
erogeneity, that have no obvious relation to rock properties.
Is it possible to use them quantitatively in spite of the lack of
any obvious relationship to rock properties derivable from
theory?

The answer seems to be yes. Specifically, in the presence
of 3-D seismic data and logged wells, we have found that the
simultaneous analysis of seismic attributes with borehole data
often leads to better estimates of reservoir or rock property
distributions, compared to estimates generated only from well
data (where the seismic data are used only for geometry or
structure). However, the relationships of seismic attributes to
log properties are usually not obvious, and furthermore, they
vary from one region to another, and even from one layer to
another. Any analysis which combines seismic attributes and
log properties in a quantitative way to predict property distri-
butions must therefore include a method to identify statisti-
cally significant relationships among them.

In this article, we present and discuss the way in which we
can quantitatively estimate the distribution of rock or reser-
voir properties using seismic attributes.

Data-driven interpretation methodology. Imagine an al-
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ternative line of reasoning which starts with the data and is
restricted to cases where both log and seismic data are avail-
able. Starting from the data, we accept that there may or may
not be relationships inherent between seismic and log data. If
they do exist,, there will be some function relating some
measurable quantities in the seismic data to other quantities
measured or derived from log data. Because we are taking a
data-driven approach, any relationships will be, by definition,
data-dependent. So, in general, we must allow that they may
vary from one geologic basin to another, and even from one
layer to another in the same basin (or between reservoir zones
in the case of a production scenario).

If any relationships exist, we aim to find them from the
data because they may not be derivable from theory in any
straightforward way. One way to find potential relationships
is with statistical tools. Using such tools, our data-driven
interpretation scenario might look something like this:

Seismic data  attributes
Well data  properties  relations+

By “log properties”,we mean rock or reservoir properties
derived from log measurements. Let us categorize “attri-
butes” as the result of mathematical transformations on the
seismic data, prestack or poststack, but without assistance
from any other type of data, such as well data. For example,
log-calibrated seismic acoustic impedance sections are not
attributes because logs were used in their computation. On
the other hand, complex trace attributes, such as instanta-
neous frequency or amplitude envelope computed from the
Hilbert transform, are considered seismic attributes for our
purposes.

We must categorize attributes carefully because of the
third step in the above process, where the log and seismic data
are combined. If we are looking for statistical relations be-
tween the two data types, then we must keep them completely
independent until that point; otherwise, any relationships we
find will be suspect. Would you be surprised to find that a
log-calibrated seismic impedance section shows good agree-
ment with log impedance curves used in the calibration?
Probably not. On the other hand, you would probably find it
significant that a seismic acoustic impedance section com-
puted without the assistance of borehole data correlates well
with impedance profiles from logs. You might then have a lot
of confidence that the section will be a reliable predictor of
impedance values away from the well, especially if we even-
tually calibrate the seismic impedance with log data.

In the above interpretation flow, the relationships inherent
in the data drive the interpretation. A key step, therefore, is
to find which seismic attributes are related to which log
properties, how reliable those relationships are, and what
functional form that relationship takes.

 Finding statistical correlations in the data. Before we
look for statistical correlations between log and seismic data,
we must make sure that the quantities we are comparing from
each data type are looking at the same geologic feature or
zone. In estimating spatial distributions of log properties, we
normally deal with a layer rather than a horizon. Accordingly,
we normally want to average both attributes (Figure 1) and
log properties (Figure 2) in a vertical zone defined by two

Figure 1. Attributes computed from a 3-D seismic data
volume are averaged vertically in a spatially varying time
zone corresponding to a geologic layer (for a thin layer,
the zone is usually best specified on the wavelet). The
attributes are averaged between the upper and lower
surfaces of the time zone. The choice of the averaging zone
can have a large influence on the attribute’s significance
in estimating a log property, and is a key interpretation
step in its own right.

Figure 2. A single-well display of various logs and a
seismic well trace extracted from an acoustic impedance
volume (computed without log calibration). The seismic
acoustic impedance trace shows a similarity to the log
impedance and to the porosity curves, suggesting that it
may have some predictive value. Log curves are averaged
in a depth zone corresponding geologically to the averag-
ing zone for the seismic attributes.

surfaces. Our immediate objective is to extract representative
values of the attributes and log properties at each well that
intersects the layer, so that these quantities can be cross-
plotted to look for relationships.

The seismic attributes normally are averaged both areally
and in a vertical sense around the well intersections. The
vertical averaging can be done in a layer defined by two
surfaces (as in Figure 1). Alternatively, we can use a single
surface and a time gate, such as 20 ms above and below the

306 THE LEADING EDGE MAY 1994

D
ow

nl
oa

de
d 

07
/2

1/
16

 to
 5

0.
18

4.
92

.4
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



Figure 3. A crossplot of acoustic impedance from logs
versus acoustic impedance from seismic for the Oslo geo-
logic layer. Each well contributes one data point, giving
an attribute value and the log property value at each well
location. Although the points do not exactly fall on the line
x = y, the plot shows a high enough significance (75.3
percent) that we have confidence in the seismic acoustic
impedance attribute as a good predictor of the actual
impedance. The well name is given next to each data point.

horizon. If the layer is very thin, the wavelet length on the
seismic scale may be more than the layer thickness; in this
case, vertical averaging of the attribute should still be done,
but the zone will be controlled more by the length of the
wavelet. The area1 averaging can be done within some radius
of acceptance around the well intersection.

In our examples, the attributes were averaged in a zone
defined by two surfaces interpreted from logs as the top and
bottom of the target layer. First, log markers from multiple
wells were picked. These markers were then mapped in depth,
using interpreted seismic surfaces for shape control. Surfaces
interpreted in this fashion are consistent with the log markers,
but also reflect the structural features in the seismic. Because
the layers were thin, the averaging zone of the seismic attri-
bute was extended several tens of milliseconds below the
lower surface. Time-to-depth conversion of gridded surfaces
is implicit in this procedure. Area1 averaging was done using
a 50 m radius.

Equally, the log values must be averaged in some fashion
over a vertical interval defined by formation boundaries,
which themselves may need to be edited interactively in a
display similar to Figure 2. The log markers for the top and
bottom surface of the layer typically are used directly to
define the zone of averaging. The algorithm used for log
averaging needs to be selected such that the averaged log
property gives a representative value for the entire layer under
consideration. Arithmetic and harmonic averaging are two
such choices, and would often be chosen for porosity and
permeability logs.

We do not describe these editing and averaging steps in
any more detail except to point out that they are nontrivial
and are important interpretation steps in their own right.
Inappropriate choices for averaging zones can have a strong
effect on the ability to detect functional relationships between
log and seismic data.

Figure 4. Log property porosity versus the seismic acous-
tic impedance. The trend of increasing porosity with de-
creasing acoustic impedance is expected from rock physics,
and gives us confidence that the high statistical signifi-
cance value seen here indicates a genuine relationship.

Significance estimation and the quality matrix. At this
point, we assume that attributes and log properties have been
averaged over a particular vertical zone defining a layer such
that each log property is represented by a single averaged
value for each well, and each seismic attribute is represented
by a two-dimensional grid. At each well-layer intersection
point, we have a pair of values: the attribute and the property.
If we have N wells that intersect the layer, then we have N
attribute-property pairs that can be displayed in a crossplot.

Figure 3 shows a crossplot of the acoustic impedance
computed from logs in 15 wells against the acoustic imped-
ance computed from the seismic data without calibration
from the wells. All 15 wells intersect the layer of interest, and
each point in the plot represents one well. If both quantities
in the plot measure the same thing, if our layer averaging was
done well, and if the noise level in the data is low, all these
points should lie along a straight line, but not one passing
through the origin because of the lack of low frequencies in
the seismic impedance. Although we can see that this is not
the case, the points do tend to fall along such a distribution,
giving us some confidence that this seismic attribute is to
some degree successful in representing the actual trend of
acoustic impedance in the layer.

How do we quantify the degree to which this scatter of
points represents a significant relationship between the attri-
bute and the property, bearing in mind that the relationship
may be nonlinear? We start with Kendall’s tau indicator,  
which measures the degree of monotonicity of a scatter of
points. If there are N points in the scatter, there is a total of

 = N (N-  slopes between pairs of points. Kendall’s  

is defined as

where  ,  ,  , and  are the numbers of positive,
negative, zero, and infinite slopes between pairs of points. If
all the slopes have the same sign, the scatter is monotonic and
the absolute value of   is 1. If half the slopes are positive
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and half are negative,   will be zero. The advantage of using
  over other correlation measures is that it is a robust

indicator of both linear and nonlinear relations. Some other
statistical indicators measure only how close a relation is to
being linear.

By itself   is not a significance estimator. With two
points,the absolute value of   is 1, but there is no signifi-
cance. Starting from  we want to quantify significance as
the probability that these two variables are related, and we
convert   to a probability using the error function.

The significance is estimated from the value of   and the
number of points N in the scatter. We use

Significance=    )

expressed as a percent, for N  4. This gives, for example, 44
percent for   0.5 with 5 points, and 84 percent for   =
0.2 with 100 points. In Figure 3, the significance of the
seismic acoustic impedance attribute to the impedance log
property is 75.3 percent.

All attribute-property pairs can be crossplotted, their sig-
nificance computed automatically, and the results summa-
rized in a “quality matrix” table, as in Table 1. For the layer
represented in the figure, called Oslo, four properties and
three attributes (including the structural depth to the top of
the layer) are combined to form the matrix. At a glance, we
can see which attributes may be significant in predicting
which property values.

The quantification of significance enables us to evaluate
which attributes will be better than others at predicting some
property. Accordingly, we would like to call up crossplots of
attribute-property pairs that show relatively high significance
values. We can limit the selection to those pairs that appear
to be physically related. For example, in this case we looked
at the acoustic impedance attribute to predict porosity (Figure
4) because theory anticipates a relationship. The crossplot
shows a trend consistent with our expectation: increasing
porosity corresponds to decreasing acoustic impedance. We
looked also at the depth “attribute” to predict water saturation
(Figure 5), because we can easily imagine a mechanism
underlying that relationship.

Finally, with a crossplot editor, we would like optionally
to exclude some wells because, perhaps, the log values may
be questionable or the well may be in the wrong location in
the formation. The next step is the determination of the
calibration function.

C alibration. We want to find some function, linear or
nonlinear, which will convert a set of m differing seismic
attributes to the desired property.

Figure 5. Crossplot for water saturation (from logs) against
depth (from seismic), where depth is considered as an
attribute. Since water saturation is often gravity-driven,
we have confidence that the higher statistical significance
here is meaningful and will be useful for prediction.

Figure 6. Instantaneous frequency attribute against the
volume of clay log property for the Bravo layer, showing
a significant, but highly nonlinear relationship. This plot
may be showing the consequence of an increase in the
number of thin shale layers causing an increase in the
volume of clay on the log data and, correspondingly,
giving an increase in high frequency content in the seis-
mic. If this is indeed the underlying mechanism, there is
no reason to expect this relationship to be linear.

Property  = 

where there may be one or more attributes used to predict the
porosity. (We use  for the two map dimensions because in
Part 2 x,y will be used for input and output to the neural
network.) For example,
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 = In any case, we need to test relationships in each data situa-
   . tion, as Table 2 demonstrates.

In some cases a linear function will be sought. An example
of a linear calibration function is

 (u,v)   +  (u,v) +  

where porosity,  is expressed as a linear combination of
attribute grids for acoustic impedance (Z) and heterogeneity
(H). The constant coefficients are found by solving a set of
equations in an overdetermined system where, in general, the
number of equations equals the number of wells in the learn-
ing set. Linear calibration is adequate when a relation is
theoretically linear, or when the data suggest a linear relation-
ship.

Nonlinear calibration is important when the relations are
more complex. Water saturation as a function of depth some-
times shows a jump at the depth of the water cut. Also, using
seismic attributes with no obvious relation to log properties
may cause us to consider a more general nonlinear calibration
function. For example, although instantaneous frequency is a
straightforward attribute to compute, its relation to any spe-
cific log property is obscure at best. It is possible to imagine
geologic settings where instantaneous frequency is influ-
enced by the shaliness, or volume of clay, if clay layers exist
in a stacked sequence.

Consider the crossplot in Figure 6, which is taken from the
same data set but in a different layer, called Bravo. Here,
instantaneous frequency versus volume of clay shows a 71
percent significance, but the relationship, if it is real, is
obviously highly nonlinear. While we might naturally be
suspicious of such an apparent relationship, it is well worth
investigating since shaliness is normally very difficult to
estimate from seismic data.

Table 2, quality matrices for layers Bravo and Charlie,
shows how the attribute-property relationships can be not
only subtle but also tenuous. The instantaneous frequency
attribute in these two layers shows high significance for two
different mineral volumes while showing low significance for
the other. Clearly, subtle relationships between attributes and
log properties will tend to be more data dependent, and we
must extract this information from the data. Our ability to find
reliable relationships driven by theory will be very limited.

This approach is in stark contrast to the way used to
estimate for example, where we know a priori that we
are going to be scanning hyperbolas in the offset domain.
However, in the case of attributes, there are many possible
transformations we can make on the data-some simple,
some complex. The attribute in Table 2, labelled reflection
heterogeneity (RH), was computed as a line integral along the
curve of the trace, measuring arc length in a time zone. It
shows much better significance for volume of dolomite in the
Bravo layer than does instantaneous frequency, yet RH ap-
pears to be useless for predicting any log property listed in
the table for the Charlie layer.

 Nonlinear calibration with an artificial neural network.
We now wish to determine the calibration function for a
relationship showing a high significance and which appears
to be nonlinear. Since nonlinear relationships are unknown
and varied, instead of prescribing a particular nonlinear
model to perform the calibration (e.g., a polynomial typically
used in regression), we let an artificial neural network (ANN)
learn a nonlinear model using example data. (ANNS will be
discussed in greater detail in Part 2.)

When the calibration curve has been computed, it estab-
lishes a functional relationship to convert seismic attribute
data to rock properties, but we still need a residual error

correction step.

Residual correction. The calibration steps above amount
to a curve fit to the points in the crossplot (Figures 4-6). In
our example, there are 15 wells, giving 15 points in the
crossplot. For linear relationships between a single attribute
and a log property, there are two independent coefficients to
be determined (from the 15 data points). Because we expect
that any relationships we may discover in the crossplots will
have an underlying rock physics basis, we normally try to fit
a smooth curve through the points, even for nonlinear curves,
which in some way might reflect that underlying, but often
unspecified, physical relationship.

The natural consequence is that the calibration curve does
not normally pass through all the points in the learning set.
Therefore, when the attributes are converted to properties
from the function implied by the curve fit, the predicted
properties do not agree at the wells. There will be a residual
error at each well location.

Normally, we would like our predictions either to agree
exactly at the wells or for their disagreement (residual error)
to be constrained within some limit. Choosing a complex
calibration curve that passes through all the points will match
the well data exactly, but it will almost always lead to a highly
improbable functional relationship. So we prefer to use a
residual correction scheme.

The correction is done first by gridding the residual errors
from each well location. Then, the error grid is subtracted
from the attribute-generated log property grid, which was
computed using the smooth calibration function. The result-
ing grid gives the desired result, which is the estimate of the
spatial distribution of a log property, consistent with the well
data and computed from both log and seismic data.

When we require that the attribute-predicted log property
estimates agree exactly at the wells, we choose the spatial
interpolation (mapping scheme) so that the gridded residual
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errors match the actual errors at the well locations. When
these two grids are subtracted, the log property distributions
show exact agreement at the wells.

Occasionally, a residual error is expected to occur, due
possibly to uncertainty or noise, in either or both data sets. In
such a case, we wish to retain some discrepancy between the
well measurements and our log property estimates at the well
locations. There are several ways to retain this’discrepancy.
One way is to map the error using kriging, where the nugget
parameter is chosen to retain some level of discrepancy.
Subtracting this error correction grid then retains the desired
discrepancy. Another way is to include error bars in the log
values and to define agreement as touching any part of the
error bar.

The result of these two steps, calibration and residual
correction, gives estimates of the spatial distribution of a log
property within a layer. These estimates agree with the well
measurements (perhaps with some tolerance), but they also
retain both the trend and the detail of the seismic data between
the wells.

Example. We took the relationship between instantaneous
frequency and volume fraction of clay in Figure 6 as valid,
and computed a nonlinear calibration function using artificial
neural networks. Residual corrections were then applied,
where we specified zero discrepancy at the well intersections.
This resulted in the map agreeing exactly with the log prop-
erty at the wells. Figures 7 and 8 show the results of this
exercise, where the volume fraction of clay is mapped for the
Bravo layer and where the colors represent the contour levels.
Figure 7 shows the result of the seismic guided estimate, as
described in the text, while Figure 8 gives the same map using
only the log data in the estimation procedure.

We can see a much greater level of detail in the seismic
guided estimates as compared to that generated from logs
only. Furthermore, we expect that the seismic guided estimate
gives a more accurate prediction. The estimated values be-
tween the wells for the logs-only map is specified just by a
mapping algorithm. The seismic guided estimate uses one or
more attributes with a high correlation to the log property
being estimated to incorporate seismic guidance between the
wells, followed by the residual error correction using a map-
ping algorithm such as that used in the wells-only survey.

However reasonable it may be to expect a better result
from the seismic guided estimate, the displays of Figures 7
and 8 show only that we have increased the spatial resolution,
and that both maps agree at the well intersections. They do
not prove any advantage to seismic guided log property
estimation. In Part 3, we will present further examples and a
controlled study which will show evidence that seismic
guided estimates can give significantly lower errors in pre-
dicting properties away from the wells, as compared with the
logs-only estimate.

Figure 7. A basemap view, showing the spatial distribu-
tion of the volume fraction of clay, estimated for the Bravo
layer. The method described in the text, seismic guided
log property estimation, was employed to generate this
map with instantaneous frequency as the guiding attri-
bute. Colors represent contour levels. The 3-D seismic
grid orientation is seen as the bold line grid. The fine line
grid indicates UTM coordinates. The 15 wells used in the
analysis (see Figure 6) are seen here originating from the
same platform in a marine environment. Well TDs are
indicated by red dots, while the open circles show where
the wells intersect the Bravo layer. Property values are
posted at the intersections. The residual correction was
made with the requirement of zero error between the map
and the control values.

 Confidence estimation. This method of attribute calibra-
tion and residual correction lets the interpreter, in principle,
generate property maps using seismic attributes with little
significance, with no theoretical basis in rock physics, or with
erred values from incorrect horizon-well intersections. For
this reason, a quantitative measure of confidence in our
estimate is a useful addition to the analysis.

(Seismic-guided estimation continued on p. 315)

Figure 8. The same map as Figure 7, but using only log
data to generate the map of volume fraction of clay. The
seismic data are used here to help define the surface over
which to map the property, but not to assist in the estima-
tion of the spatial distribution of the clay fraction. Both
maps agree at the well intersections, shown by the open
circles and the posted values.
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will still be largely absent.
Turning now to the issue of multiples

in relation to stacking and deconvolu-
tion, a particularly simple means of
study is at hand. We can use a vibratory
or coded source and acquire data with
strong signal levels at offsets approach-
ing zero. The subsequent correlative op-
eration to reconstruct impulsive wave-
forms with perhaps some simple phase
correction does not involve a decon-
volution process. Again, I submit that
examining such data would once again
find most of the theoretically predicted
multiples to be absent. Obviously this
approach incorporates no AVO or move-
out stretch or other moveout effects.

Finally, the matter of fitting synthet-
ics to seismic field data of any kind
incorporates still other hazards. In that
region of sand/shale sequences where
the sands and shales “cross” in acoustic
impedance (which I term sand/shale re-
flectivity zone II), we find many sands
highly laminated with shale which are
quite erratic in their seismic character as
might be predicted from sonic and den-
sity logs. They are even anomalous in

their electric log signatures. In fact, they
constitute one of the major categories of
low resistivity sands which are currently
receiving much attention.

When the thickness of zone II is great
(10-12 000 ft at the Texas-Louisiana
border), synthetic fits are notoriously
bad and resistivity derived synthetics
are only slightly better. At this time, the
underlying principles of what is hap-
pening here are not at all understood.
For that very reason I limited the scope
of discussion accompanying the conjec-
ture. When we include this next level of
geologic considerations, we must en-
dorse John Denham’s closing sentence
and repeat “I have to be amazed that
they (synthetics) ever fit!”

My message in terms of the conjec-
ture remains a clearly focussed one. No
matter what we do to seismic data in
terms of handling, processing, display,
etc. we should not lose sight of the un-
derlying geologic information compo-
nents. Mechanical considerations of our
current seismic practice should not
cause us to overlook serious defects in
our conceptual and physical models of

how our data relate to the subsurface.
Hence I must thank John for raising the
issues he did to help clarify our thinking
and ultimately our understanding.

I also must thank an astute reader
who, having great geologic expertise,
recognized some errors in the diagram-
matic sketch of Figure 1 accompanying
my “Conjecture concerning multiple re-
flections.” The figure showed a local
area having a large influx of sediments
so as to emphasize the lateral inhomo-
geneity of the sand development. In-
deed, the sand is not even correctly po-
sitioned in relation to the slopes as it
would be in the real world. Also, for this
special case having such great sediment
flow, the word “regressive” should be
substituted for “transgressive” in the
figure caption, and in the text the words
“locally regressive sea” should replace
“transgressive sea. ” The basic ideas and
concepts of the conjecture remain un-
changed, and I apologize to all for tak-
ing too much license with the artwork.
We also thank the reader who wishes to
remain anonymous for these perceptive
observations. 

(Seismic-guided estimation  continued from p. 310)

Among the several ways to obtain confidence maps is the
cross validation, or “leave one out” analysis. We check how
closely a measured value in a well is predicted when the
calibration and residual correction are done excluding data
from that well. This procedure is then repeated for all wells
in the learning set, and the result is mapped to give a distri-
bution of confidence or estimated error. This measure is
effective in evaluating where in the learning set do the attri-
butes and property variables follow the general trend in the
data (as seen by the calibration analysis) and where they do
not. This type of confidence estimation focuses on the con-
sistency of the well data with the attributes, and it tells us
around which wells the spatial predictions tend to be more
accurate.

Other measures of confidence exist, such as that obtained
from multivariate geostatistical methods. Here, the value of
the confidence normally decreases the farther one gets from
well control, giving an indication at any point on the map of
confidence in the final estimate. This type of confidence
analysis results from using cokriging for the property estima-
tion steps.

G eostatistical alternatives. Seismic guided log property
estimates can also be done using a geostatistical method
called cokriging, which gives an alternative to the calibration

and residual correction steps. In this method, the two data sets
(i.e., the well measurements and the attributes) are input
simultaneously into an estimator, which uses spatial autocor-
relations and cross correlations to make, in a single step, a
least squares estimate of the desired property distribution,
with an implicit linear calibration function (although cokrig-
ing can accommodate nonlinear functions). As mentioned
above, this method also delivers a confidence map.

Cokriging provides effective tools for handling cases
where the seismic data are in one or more 2-D lines, where
both the attributes and the well measurements begin as scat-
tered (as opposed to gridded) data. It can handle situations
where at some spatial locations there are no data values from
either data set.

With 3-D seismic data, however, the attributes are already
gridded and the two-step approach of calibration and residual
corrections gives some advantages-the principal one being
the ability to edit manually (or even to specify) a desired
calibration function, linear or nonlinear, with some rock
physics relationship in mind.

Coming attractions. Part 2 will seek to provide the reader,
who has no prior knowledge of the subject, a rudimentary
understanding of artificial neural networks. Then we shall
see, in some detail, how ANNS can be used to obtain a best-fit
nonlinear calibration function for seismic attributes by
“learning” from a test data set. 
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